『算法-ACM竞赛-思维题』–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)

『算法-ACM 竞赛-思维题』–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)

ACM 思维题训练集合
To confuse the opponents, the Galactic Empire represents fractions in an unusual format. The fractions are represented as two sets of integers. The product of numbers from the first set gives the fraction numerator, the product of numbers from the second set gives the fraction denominator. However, it turned out that the programs that work with fractions in this representations aren’t complete, they lack supporting the operation of reducing fractions. Implement this operation and the Empire won’t forget you.

Input
The first input line contains two space-separated integers n, m (1 ≤ n, m ≤ 105) that show how many numbers the first set (the numerator) and the second set (the denominator) contain, correspondingly.

The second line contains n space-separated integers: a1, a2, …, an (1 ≤ ai ≤ 107) — the numbers that are multiplied to produce the numerator.

The third line contains m space-separated integers: b1, b2, …, bm (1 ≤ bi ≤ 107) — the numbers that are multiplied to produce the denominator.

Output
Print the answer to the problem in the form, similar to the form of the input data. The number of values in the sets you print nout, mout must satisfy the inequality 1 ≤ nout, mout ≤ 105, and the actual values in the sets aout, i and bout, i must satisfy the inequality 1 ≤ aout, i, bout, i ≤ 107.

Separate the values in the lines by spaces. The printed fraction must be reduced, that is, there mustn’t be such integer x (x > 1), that the numerator and the denominator of the printed fraction are divisible by x. If there are several matching answers, print any of them.

Examples
Input
3 2
100 5 2
50 10
Output
2 3
2 1
1 1 1
Input
4 3
2 5 10 20
100 1 3
Output
1 1
20
3
Note
In the first test sample the numerator equals 1000, the denominator equals 500. If we reduce fraction 1000/500 by the greatest common divisor of the numerator and the denominator (by 500), we obtain fraction 2/1.

In the second test sample the numerator equals 2000, the denominator equals 300. If we reduce fraction 2000/300 by the greatest common divisor of the numerator and the denominator (by 100), we obtain fraction 20/3.

在这里插入图片描述
日常 WA 一天
不看跑的数据,我都不知道自己怎么错的,老天爷。我的输出超出了限制 100001 不能超过 100000,我觉得那时候,那些没有过的,一定是这个原因,出题人真是丧心病狂。
第一个代码是错的,第二个是修改了的,换了方式。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#include <bits/stdc++.h>
using namespace std;
template <typename t>
void read(t &x)
{
char ch = getchar();
x = 0;
int f = 1;
while (ch < '0' || ch > '9')
f = (ch == '-' ? -1 : f), ch = getchar();
while (ch >= '0' && ch <= '9')
x = x * 10 + ch - '0', ch = getchar();
x *f;
}
bitset<100000010> v;
int prime[6000001];
int m = 0;
void primes(int n)
{
for (int i = 2; i * i <= n; i++)
{
if (!v[i])
{
for (int j = i * i; j <= n; j += i)
v[j] = 1;
}
}
for (int i = 2; i <= n; i++)
if (!v[i])
prime[m++] = i;
}
vector<int> a[4];
unordered_map<int, int> c, d;
int main()
{
int n, m, maxi = 0;
read(n), read(m);
primes(10000005);
for (int i = 0; i < n; i++)
{
int tem;
read(tem);
maxi = max(maxi, tem);
c[tem]++;
}

for (int i = 0; i < m; i++)
{
int tem;
read(tem);
maxi = max(maxi, tem);
d[tem]++;
}
//cout << 1 << endl;
for (int i = 0; prime[i] <= maxi; i++)
{
// cout<<i<<endl;
int cnt = 0, ans = 0, cnt2 = 0;
int flag = 1;
for (auto po = c.begin(); po != c.end();)
{
// cout<<1<<endl;
pair<int, int> tem = *po;
cnt = 0;
if (tem.first < prime[i])
{
po++;
continue;
}
else
{
flag = 0;
while (tem.first % prime[i] == 0)
{
tem.first /= prime[i];
cnt++;
//cout<<i<<endl;
}
cnt *= tem.second;
auto pi = po;
po++;
c.erase(pi);
if (tem.first != 1)
c[tem.first] += tem.second;
}
ans += cnt;
}
cnt2 = ans;
ans = 0;
for (auto po = d.begin(); po != d.end();)
{
pair<int, int> tem = *po;
cnt = 0;
if (tem.first < prime[i])
{
po++;
continue;
}
else
{
flag = 0;
while (tem.first % prime[i] == 0)
{
tem.first /= prime[i];
cnt++;
//cout<<i<<endl;
}
cnt *= tem.second;
auto pi = po;
po++;
d.erase(pi);
if (tem.first != 1)
d[tem.first] += tem.second;
}
ans += cnt;
}
cnt = cnt2 - ans;

if (cnt == 0)
continue;
else if (cnt < 0)
{
cnt = -cnt;
int temp = 1;
int j = 0;
for (; j < cnt; j++)
{
temp *= prime[i];
if (temp * prime[i] > 10000000)
{
a[3].push_back(temp);
// cout << 1 << endl;
temp = 1;
}
}
a[3].push_back(temp);
}
else
{
int temp = 1;
int j = 0;
for (; j < cnt; j++)
{
temp *= prime[i];
if (temp * prime[i] > 10000000)
{
a[2].push_back(temp);
// cout << 1 << endl;
temp = 1;
}
}
a[2].push_back(temp);
}
if (flag)
break;
}
if (a[2].size() == 0)
a[2].push_back(1);
if (a[3].size() == 0)
a[3].push_back(1);
cout << a[2].size() << " " << a[3].size() << endl;
for (int i = 0; i < a[2].size(); ++i)
printf("%d ", a[2][i]);
puts("");
for (int i = 0; i < a[3].size(); ++i)
printf("%d ", a[3][i]);
puts("");
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;

int n, m, tot, a[100005], b[100005], z[10000005], pos[10000005], q[1000005], t1[1000005], t2[1000005];

int main()
{

scanf("%d%d", &n, &m);
for (int i = 1; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = 1; i <= m; ++i)
scanf("%d", &b[i]);
for (int i = 2; i <= 10000000; ++i)
if (!z[i])
{
for (int j = i; j <= 10000000; j += i)
z[j] = i;
q[++tot] = i;
pos[i] = tot;
}
for (int i = 1; i <= n; ++i)
{
int k = a[i];
while (k != 1)
{
t1[pos[z[k]]]++;
k /= z[k];
}
}
for (int i = 1; i <= m; ++i)
{
int k = b[i];
while (k != 1)
{
t2[pos[z[k]]]++;
k /= z[k];
}
}
for (int i = 1; i <= tot; ++i)
{
t1[i] = min(t1[i], t2[i]);
t2[i] = t1[i];
}
printf("%d %d\n", n, m);
for (int i = 1; i <= n; ++i)
{
int k = a[i], p = a[i];
while (k != 1)
{
if (t1[pos[z[k]]])
{
p /= z[k];
t1[pos[z[k]]]--;
}
k /= z[k];
}
printf("%d ", p);
}
printf("\n");
for (int i = 1; i <= m; ++i)
{
int k = b[i], p = b[i];
while (k != 1)
{
if (t2[pos[z[k]]])
{
p /= z[k];
t2[pos[z[k]]]--;
}
k /= z[k];
}
printf("%d ", p);
}
printf("\n");
return 0;
}

『算法-ACM竞赛-思维题』–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)
https://chiamzhang.github.io/2024/06/29/『算法-ACM竞赛-思维题』–CodeForces - 222 C Reducing Fractions(数学+有技巧的枚举)/
Author
Chiam
Posted on
June 29, 2024
Licensed under